Link
Highlights&&Note
机器学习(machine learning,ML)是一类强大的可以从经验中学习的技术。 通常采用观测数据或与环境交互的形式,机器学习算法会积累更多的经验,其性能也会逐步提高。
机器学习是用来解决
任务内部关系过于复杂的情况,或者超过人类意识理解的东西,例如:图像识别 ^231222a7通常,即使我们不知道怎样明确地告诉计算机如何从输入映射到输出,大脑仍然能够自己执行认知功能。 换句话说,即使我们不知道如何编写计算机程序来识别“Alexa”这个词,大脑自己也能够识别它。 有了这一能力,我们就可以收集一个包含大量音频样本的数据集(dataset),并对包含和不包含唤醒词的样本进行标记。 利用机器学习算法,我们不需要设计一个“明确地”识别唤醒词的系统。 相反,我们只需要定义一个灵活的程序算法,其输出由许多参数(parameter)决定,然后使用数据集来确定当下的“最佳参数集”,这些参数通过某种性能度量方式来达到完成任务的最佳性能。
输入与输出的关系是模糊的
通过多参数灵活映射输入与输出 ^e2164f0a那么到底什么是参数呢? 参数可以被看作旋钮,旋钮的转动可以调整程序的行为。 任一调整参数后的程序被称为模型(model)。 通过操作参数而生成的所有不同程序(输入-输出映射)的集合称为“模型族”。 使用数据集来选择参数的元程序被称为学习算法(learning algorithm)。
^bc5cc8ed但如果模型所有的按钮(模型参数)都被随机设置,就不太可能识别出“Alexa”“Hey Siri”或任何其他单词。 在机器学习中,学习(learning)是一个训练模型的过程。 通过这个过程,我们可以发现正确的参数集,从而使模型强制执行所需的行为。
^ef363967训练过程通常包含如下步骤:
- 从一个随机初始化参数的模型开始,这个模型基本没有“智能”;
- 获取一些数据样本(例如,音频片段以及对应的是或否标签);
- 调整参数,使模型在这些样本中表现得更好;
- 重复第(2)步和第(3)步,直到模型在任务中的表现令人满意。
^6403cc68
我们没有编写唤醒词识别器,而是编写了一个“学习”程序。 如果我们用一个巨大的带标签的数据集,它很可能可以“学习”识别唤醒词。
机器学习的程序是一个学习程序 ^a6d8fb02当每个样本的特征类别数量都是相同的时候,其特征向量是固定长度的,这个长度被称为数据的维数(dimensionality)。
^d95af809固定长度的特征向量是一个方便的属性,它可以用来量化学习大量样本。
然而,并不是所有的数据都可以用“固定长度”的向量表示。 以图像数据为例,如果它们全部来自标准显微镜设备,那么“固定长度”是可取的; 但是如果图像数据来自互联网,它们很难具有相同的分辨率或形状。 这时,将图像裁剪成标准尺寸是一种方法,但这种办法很局限,有丢失信息的风险。 此外,文本数据更不符合“固定长度”的要求。 比如,对于亚马逊等电子商务网站上的客户评论,有些文本数据很简短(比如“好极了”),有些则长篇大论。 与传统机器学习方法相比,深度学习的一个主要优势是可以处理不同长度的数据。
^8384344e
监督学习的学习过程一般可以分为三大步骤:
- 从已知大量数据样本中随机选取一个子集,为每个样本获取真实标签。有时,这些样本已有标签(例如,患者是否在下一年内康复?);有时,这些样本可能需要被人工标记(例如,图像分类)。这些输入和相应的标签一起构成了训练数据集;
- 选择有监督的学习算法,它将训练数据集作为输入,并输出一个“已完成学习的模型”;
- 将之前没有见过的样本特征放到这个“已完成学习的模型”中,使用模型的输出作为相应标签的预测。